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Abstract: The stereochemical and energetic consequences of the lone-pair effect in the title molecules
and complexes have been studied by DFT calculations based on a vibronic coupling concept. The anionic
complexes were examined as bare entities and, more realistically, in a polarizable charge-compensating
solvent continuum. The tendency for distortions of AX3 compounds away from the high-symmetry parent
geometry becomes more pronounced the larger the chemical hardness of a molecule and its constituents
is; on the other hand, anionic complexes AXn

-(n-3) (n ) 4-6) become softer and less susceptible to distortion
as compared to the corresponding AX3 molecule, the larger the coordination number and the anionic charge
are. Thus, while all AX3 compounds adopt the distorted C3v structure, only very few AX6

3- species are
calculated to deviate from the parent Oh geometry. If a complex possesses a low stabilization energy due
to an unfavorable central ion/ligand size ratio, vibronic coupling may even lead to complete dissociation of
one (SbF6

3- f SbF5
2- + F-) or more (PF6

3- f PF4
- + 2F-) ligands. The derived hardness rule perfectly

covers the reported structural findings. The calculations indicate that the lone-pair effect is an orbital overlap
phenomenon. The interpair repulsion within the valence shell, keeping the average bond distances constant,
does not stabilize the distorted with respect to the parent geometry, in disagreement with the VSEPR model.

I. Introduction

The lone-pair effect is a fascinating phenomenon in the
stereochemistry of inorganic compounds and complexes. Though
the valence shell electron pair repulsion (VSEPR) model
developed by various contributors1 allows useful predictions
concerning the symmetry and approximate geometry of the
induced polyhedron distortions, the concept is neither able to
specify- starting from the higher symmetry parent geometry
observed for the analogous molecules or complexes without the
lone pair- the nuclear displacement path leading to the distorted
geometry nor able to predict whether a steric effect occurs or
not. Reported structural data show that lone-pair compounds
may not only frequently possess the undistorted parent geometry,
but that they sometimes adopt both the regular and the distorted
geometry depending on the particular crystal lattice or even
solvent. The physical basis underlying the VSEPR concept has
been analyzed by valence bond calculations considering promo-
tion, hybridization, and exchange repulsion.2 From these and
further model studies,3 it is deduced that interpair repulsion

might not be the driving force for a distortion. Furthermore,
SCF results suggest that exchange (Pauli) repulsion forces
cannot bend the H2O molecule, for example, without considering
classical Coulomb repulsion and orbital overlap energy changes.4

A more general approach to the nature of the lone-pair effect is
the analysis of the vibronic interactions between the nuclear
and electronic motions during the distortion process; it has been
successfully applied (see Bersuker5) in the special form of the
second-order or pseudo-Jahn-Teller (PJT) vibronic concept.6

Here we explicitly mention the recent model studies of
Schwerdtfeger7 and Grochala and Hoffmann, where a correlation
of the vibronic coupling strength with the electronegativities
of various polyatomic molecules is proposed.8 Though more
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complex than the broadly applicable Gillespie-Nyholm model
and its recent extension (ligand close packing),9 the vibronic
coupling model is able to develop rules specifying on which
parameters the energy stabilization and the extent of the
geometric distortion of a lone-pair polyhedron depend. These
parameters can be linked to properties of interest for the chemist,
such as the position of the constituents of the considered
molecule or complex in the periodic table, the coordination
number, etc. However, such a vibronic coupling model becomes
very efficient only in combination with quantum-mechanical
calculations on the basis of density functional theory (DFT),
for example, providing reliable energy and geometric data for
a large number of molecules and complexes in a rather short
time. We note here that our vibronic analysis refers to theenergy
minimum, which characterizes the distorted species, and not to
only small displacements away from the parent geometries,
as is usually the case in PJT-type treatments5 (Supporting
Material A).

In a preceding model study10 we have investigated molecules
AH3 and AX3 (A ) N, P, As, Sb, Bi; X) F, Cl, Br, I) with the
interesting finding that the hardness of these entities is the most
significant property in predicting lone-pair distortion effects.
In the following - after having introduced DFT and the used
vibronic interaction model in simple terms in sections II and
III - we first give a short review of the previously obtained
results10 for the above-mentioned molecules, with novel exten-
sions and emphasizing the chemical aspects of the lone-pair
phenomenon. In the following three sections V-VII, complexes
AXn

-(n-3) with coordination numbers (CN)n ) 4-6 are
treated. Here we base our main conclusions- for the sake of
a more realistic comparison with experimental data- on the
charge-compensated anions in a polarizable solvent continuum
(section II).

In a widely used chemical textbook,11 it is stated that the
lone pair becomes less decisive in modifying the stereochemistry
of the complex halides of the trivalent elements in the fifth main
group, the larger the atomic weight of the central atom and the
halogen is, and the higher the coordination number becomes-
this remark referring to available structural data. They add that
no general and quantitative theory accounting for and predicting
such a trend is so far available. Indeed, despite pioneering work
by Bader,12 Bartell,13,14 and Pearson,15 who emphasized the
importance of bonding effects (the interplay between bonding
and nonbonding interactions) for the stereochemical activity of
lone pairs within the frame of a PJT formalism, and later model
studies,16 this statement is still valid. It is the ambitious aim of
this contribution to present a sensible model accomplishing this,
based on DFT calculations. We are not aiming at high numerical

accuracy, but present an empirical vibronic model adjusted to
DFT energies and geometries, with the emphasis laid on the
chemical and structural relevance.

II. Computational Details

The calculations were carried out using the Amsterdam density
functional (ADF) program version 2000.02 developed by Baerends et
al.17 Calculated total energies and geometry optimizations are based
on the gradient corrected exchange functional of Becke18 and the
correlation functional of Perdew19 in conjunction with the LDA
parametrization of Vosko et al.20 Molecular orbitals and electronic
configurations of AXn

(n-3)- complexes are approximated by a triple-ú
basis set for both A and X, including scalar relativistic corrections for
all studied clusters. Utilizing the extended transition state method by
Ziegler and Rauck,21 the total energyEt is decomposed into three terms.
The most significant of these in the context of the Gillespie-Nyholm
model is the overlap between the closed shells of the unrelaxed
fragments of the considered molecules or complexes, giving rise to
the Pauli exchange repulsion term (EP). The electrostatic energy (Eel)
accounts for the Coulomb repulsion between the nuclei and between
the electrons of different fragments and for the Coulomb attraction
between electrons on one fragment and nuclei of all the other unrelaxed
fragments. The relaxation of the electron density by the charge transfer
when exciting electrons from doubly and singly occupied fragment
orbitals into empty or singly occupied MOs is allowed for by the orbital
interaction energyEorb. We focus our main interest on the changes of
these quantities during the transition from the high-symmetry parent
to the distorted geometry:δEP, δEel, andδEorb. These crucially depend
on the reference, if the chosen fragments are atoms or ions, for example.
Only the change of the total energyδEt is independent of the fragment
choice. Thus, starting from atomic fragments,δEorb will not only reflect
attractive interactions due to overlap between atomic orbitals (cova-
lency), but also repulsive X- T X- interactions induced by the AT
X charge transfer. In the case of ionic fragments,δEorb is usually rather
different, depending on the effective charges of the fragments of the
considered molecule or complex. We interpret10 δEP as representing
mainly the steric repulsion energy, which is considered to govern the
change from the parent to the distorted geometry by the VSEPR model,
the latter implying that the repulsion within the set of bonding electron
pairs and the lone pair in a molecule or complex is more favorable in
the distorted than in the high-symmetry parent geometry. ThoughδEP

is defined for the unrelaxed fragments, and hence orbital contributions
stemming from (antibonding) interactions between doubly occupied
MOs are expected to add to the steric repulsion energy by the relaxation
process, this correction will be small. In the following, we base our
analysis on atomic fragments as the reference, which is a more realistic
choice for isolated molecules or complexes than the one of ionic
fragments pertinent to ionic solids.

Highly charged anions are known to be intrinsically unstable against
dissociation into less charged species. However, stabilization by the
Madelung potential created by counterions in solids may change the
situation thoroughly. To (in the average) mimic such electrostatic
stabilization of charged species, while keeping the treatment as general
as possible, we used an isotropic polarizable dielectric continuum within
the so-called conductor-like screening model (COSMO) of solvation.22

(9) Gillespie, R. J.; Robinson, E. A.Angew. Chem.1996, 108, 539 [Int. Ed.
Engl. 495]. Gillespie, R. J.Coord. Chem. ReV. 2000, 197, 51.

(10) Atanasov, M. A.; Reinen D.J. Phys. Chem. A2001, 105, 5450.
(11) Greenwood, N. N.; Earnshaw, A.Chemistry of the Elements, 2nd ed.;

Butterworth & Heinemann: Oxford, 1998.
(12) Bader, R. F. W.Mol. Phys.1960, 3, 137.
(13) Bartell, L. S.J. Chem. Educ.1968, 45, 754.
(14) Bartell, L. S.Coord. Chem. ReV. 2000, 197, 37.
(15) Pearson, R. G.J. Am. Chem. Soc.1969, 91, 4947-4955. See also Pearson,

R. G. Symmetry Rules for Chemical Reactions, Orbital Topology, and
Elementary Processes; John Wiley and Sons: New York, 1976.
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It is implemented in the ADF2000.02 program,23 and not only allows
single point calculations, but geometry optimizations and Hessian
computations as well. We chose the dielectric constant of water (ε )
78.4) and a solvent-excluding surface around the solute, with the solvent
molecule, approximated as spherical (Rsolv ) 1.4 Å for water), rolling
around the van der Waals surface (VdW) of the “dissolved” species.
Atomic radii for solvent calculations are still scarce, and we mainly
restrict to PFn-(n-3) clusters withRP ) 2.4 Å23 andRF ) 1.4 Å,24 as
compared to the analogous AlIII polyhedra (RAl ) 2.3 Å25), but also
included BIII (RB ) 1.2 Å26) in comparison to NIII (RN ) 1.6 Å24). In
the case of SbFn-(n-3), the unknown radius of SbIII (RSb) has been
estimated using the relationRSb/RSb(VdW) ) RP/RP(VdW) with
RSb(VdW) ) 2.0,27 RP(VdW) ) 1.820, andRP ) 2.4 Å, yieldingRSb )
2.7 Å.

In the presence of a solvent, the solute-solvent interaction or
solvation energy (Esolv) comes additionally into play. The energy
changes accompanying the structural transition, without (1a) and with
solvent (1b), are accordingly:

While δEP, δEel, and δEorb may change considerably, when placing
the considered species into the solvent medium (fδEP′, δEel′, δEorb′),
the sum is nearly constant (δEt′ - δEsolv = δEt). Also, δEsolv is small,
though (-Esolv) increases considerably with increasing charge. When
choosing a solvent withε about one-half that of H2O, such as acetonitrile
(ε ) 36.6, Rac ) 2.06 Å;28 in parentheses), no dramatic change is
observed:

DFT orbitals and their energies have been calculated by solving the
Kohn-Sham equations, where both electronic exchange and correlation
were taken into account. The orbital energies of a specific bare anion
shift by about the same amount to higher energies when compared with
the charge-compensated complex. Thus the highest occupied orbitals
may adopt positive energy values, implying instability with respect to
self-ionization, even though the anions are calculated to possess a
relative energy minimum. We will hence base our analysis of the MOs
and the underlying bonding effects mainly on the more realistic solvated
species.

The vibrational energies of the bare anions are strongly different
from those of the charge-compensated species, precluding a direct
comparison with experiment. Taking octahedral PF6

3- as an example,
the R1g andεg modes shift to much higher energies when proceeding
to the solvated anion (336f 414 and 168f 241 cm-1, respectively).
The τ2g, the τ2u, and the lower-energyτ1u modes are less affected
(179f 171, 126f 128,-149f -164 cm-1), the negative numbers
denoting an imaginary frequency and hence configurational instability.
Similarly, calculated vibrational energies of the bare SbBr6

3- anion [114
(R1g), 83 (εg), 52 (τ2g), 44,122 (2xτ1u), and 34 (τ2u) cm-1] are strongly
underestimated if compared with the experimental values [180 (R1g),
153 (εg), 73 (τ2g), 107,180 (2xτ1u) cm-1]. From our calculations on
PF6

3-, a solvent can account only to a limited extent for such influences,
because kinematic effects due to the finite masses of the surrounding

solvent are completely ignored. Therefore, we use the vibrational
energies only as a semiquantitative tool for the exploration of certain
trends governing the lone-pair activity.

III. The Vibronic Coupling Model

If one looks at coordinated lone-pair cations starting from
the highest possible symmetry, say the octahedralOh for the
coordination number CN) 6, and considers nuclear motions
along certain normal mode distortion coordinates, these may
lead into lower-symmetry point groups with decreased energy.
The critical condition for the selected modesυ with such a
property is that the HOMO- here of a1g symmetry, which
houses the lone pair (mostly ns2) - and the LUMO or a split
state of the LUMO (inOh: t1u, originating from the metal np
orbitals) adopt the same symmetry, thus inducing an interaction,
which stabilizes the HOMO (Figure 1). Group theory allows
one to select the possible vibronically active vibrationsυ by
inspecting the direct product, a1g X υ X t1u in Oh, which has to
contain the totally symmetric representation (second-order or
pseudo-Jahn-Teller effect, PJTE6). This is in ns2 lone-pair
systems always the case, if the vibrational modes possess the
same symmetry as the LUMO. In octahedral coordination, the
stretching and bendingτ1u vibrations (Figure 1) obey this
condition. Hence, any linear combinationj of the threeτ1u(i)
components (i ) z, x, y) will eventually lead into distorted
coordination polyhedra with decreased energy. The highest
possible distortion symmetries along these pathways are
j ) C4V [τ1u(z)], C3V [(1/x3)(τ1u(z) + τ1u(y) + τ1u(x))], andC2V

[(1/x2)(τ1u(x) + τ1u(y)], inducing the (5+ 1), (3 + 3), and
(4 + 2) coordinations shown in Figure 1. From the twoτ1u

modes inOh, only one exhibits soft mode behavior, with mixed
bending and stretching properties (section VII). The correspond-
ing energy matrix contains, via theN(i) term, the distortion
coordinatesτ1u(i) and the vibronic coupling constantt, which
controls the strength of the a1g-t1u electronic interaction:

(22) Klamt, A.; Schu¨ürmann, G.J. Chem. Soc., Perkin Trans. 21993, 799.
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(24) Klamt, A.; Jonas, V.J. Chem. Phys.1996, 105, 9972.
(25) Zurek, E.; Ziegler, T.Inorg. Chem.2001, 40, 3279.
(26) Vanka, K; Chan, M. S. W.; Pye, C. C.; Ziegler, T.Organometallics2000,

19, 1841.
(27) Bondi, A.J. Phys. Chem.1964, 68, 441.
(28) Handbook of Chemistry and Physics, 76th ed.; Lide, D. R., Ed.; CRC

Press: Boca Raton, 1995-1996.

Figure 1. The HOMO (from ns) and LUMO (from np)- initial splitting
∆MO - in the MO scheme for an octahedral lone-pair AIII complex and
their vibronic interaction, resulting inC4V, C3V, andC2V (here e splits in b1
and b2 additionally) distortion geometries: a1g X τ1u X t1u; the first-order
Jahn-Teller splitting of the excited t1u state is indicated. The four high-
symmetric components of theτ1u(2x), εg, and τ2g octahedral vibrational
modes as well as the linear combinations ofτ1u according toC2V-, C3V-,
andC4V-type displacements are also depicted.

δEt ) δEP + δEel + δEorb (1a)

δEt′ ) δEP′ + δEel′ + δEorb′ + δEsolv (1b)

PF4
- PF3 F-

Et′ -28.44(-28.62) -19.54(-19.54) -8.45(-8.38) eV
Esolv -2.60(-2.48) -0.05(0.0.05) -4.46(-4.39) eV
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It uses many electron states (A1g, T1u) rather than just consider-
ing the HOMO and LUMO- according to the A1g X τ1u X T1u

direct product- because the vibronic coupling includes all MOs
of a1g and t1u symmetry in the respective MO scheme. It is
confined to a two-state system, restricting to the ground state
and only the lowest among other excited T1u states of higher
energy, which can also mix with the ground state. Our
calculations show that thetwo-state approximationworks rather
well in the case of the AX3 molecules10 (Appendix).

Eg and Ee are the energies of the interacting ground and
excited state, the energy difference being the initial splittingδ.
The general equation for the stabilization energy of the ground
state resulting from vibronic matrixes of the kind (eq 2) has
the form:

where the upper index m denotes that all energies are those
characteristic for the minimum of the potential curves (see
Figure 7a) in the distorted geometry.Eg

m and Ee
m (δEg,e

m )
Ee

m - Eg
m) are the hypothetical energy values of the ground

and excited state, respectively, in the case of vanishing
nondiagonal coupling termsN, but leaving the nuclear displace-
ments as in the optimized distorted geometry.Evib

m is the
vibronic energy induced by the distortion process (eq 4) and is
composed of a diagonal contribution connected withδEg,e

m -
accounting for the admixture of anEe

m component into the
ground-stateEg

m energy- and the symmetry-breaking nondi-
agonalNm term.Erf

m is the energy necessary for the geometric
change from the parent to the distorted structure without taking

vibronic coupling into account (N ) 0) and is, as in the
considered cases, usually a positive quantity (see ref 4, however).
The square root (eq 4) corresponds to one-half of the final
splitting EFC

m ) E+
m - E-

m, the Franck-Condon energy
between the excited and the ground state in the distorted
geometry, an observable quantity. Figure 2 illustrates the
energetic situation, the numerical data being those of BiF3 during
the D3h to C3V transition (section IV).

We did not include the first-order Jahn-Teller splitting of
the excited T1u state into matrix 2, which may occur along the
pathways of theεg (stretching) andτ2g (bending) vibrations in
Oh; here, usually the coupling to theεg mode dominates, leading
into theD4h point group (see Figure 1). Because excited-state
properties are admixed to the ground state via the nondiagonal
PSJT-coupling elementN, the complex geometry and stabiliza-
tion energy are influenced by this effect (section VII). With

this in mind, theC4V distortion, which differs fromD4h by the
missing inversion center, is expected to be favored most.

We show in the next four sections that the vibronic coupling
model exactly predicts all possible distortion geometries and
develops criteria, whether a distortion occurs or not. We finally
remark that we will use the notationVibronic couplingexclu-
sively for the lone-pair phenomenon, as connected with the
nondiagonal elements of matrix (eq 2) in the following. We
thus confine the usually broad definition of vibronic coupling
as any process connected with the interaction between nuclear
and electronic motions to a specific phenomenon.

IV. The Coordination Number CN ) 3

In accord with the experimental data, the three-coordinate
compounds AH3 and AX3 (A ) N to Bi; X ) F to I) are
calculated by DFT to possess pseudotetrahedral structures AH3E
and AX3E (E ) lone pair), as expected by the VSEPR model
of Gillespie-Nyholm.1,9 The distortions from the hypothetical
planar high-symmetry parent geometryD3h toward the trigonal
pyramid C3V (Figure 3) are accompanied not only by large
angular (bond angle) changes according to the vibronically
active symmetry-breakingR2′′ vibration, but also by significant
radial alterations (bond length reduction in the case of AX3E
and bond length extension in the case of AH3E) according to
the totally symmetricR1′ stretching mode.10 Here, it is striking
to note that the Pauli interaction energyδEp, andδEel as well,
is only sensitive with respect to the radial changes, while it
remains approximately constant during theR2′′-type displace-
ments (Table 1).The driVing force for the steric lone-pair effect
is a pure bond energy changestemming fromδEorb, in accord
with earlier statements.5,13 Hence, we conclude from the DFT
analysis thatthe repulsion between the bonding and lone
electron pairs- which should be energetically more faVorable
in the distorted structure according to the VSEPR concept-
does not hold.δEP, which can be considered to represent
essentially the VSEPR energy (section II), nearly vanishes if
solely displacements according to the symmetry-breaking (sb)
R2′′ mode are considered (δEP

sb = 0). It is challenging to check
whether this result holds for the higher coordination numbers
as well.

As is readily deduced from the Kohn-Sham MO scheme
for PF3 (Figure 3), the HOMO and LUMO are of a1′(3a1′) and

A1g(s
2) Eg - E N(x) N(y) N(z)

T1ux(s1px
1) N(x) Ee - E 0 0

T1uy(s1py
1) N(y) 0 Ee - E 0 N(i) ) tτ(i)

T1uz(s
1pz

1) N(z) 0 0 Ee - E
(2)

E-
m ) Eg

m +(1/2)δEg,e
m - {(δEg,e

m/2)2 + Nm2}1/2 (3)

t Erf
m - Evib

m

Evib
m t (1/2)(EFC

m - δEg,e
m)

EFC
m ) 2{(δEg,e

m/2)2 + (Nm)2}1/2 (4)

Erf
m t Eg

m

Figure 2. The energy changes of the BiF3 molecule- A1′ X R2′′ X A2′′
PJT-coupling,D3h f C3V transition according to the vibronic model
(eqs 3, 4).
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a2′′(2a2′′) symmetry. In the many electron description, A1′(ns2)
and A2′′(ns1pz

1) are the interacting states, implying an A1′ X
R2′′ X A2′′ direct product. From the a1′ and a2′′ MOs in D3h

involved in the vibronic process, particularly the HOMO is
strongly stabilized (by-1.4 eV). It is apparently the energy
gain of the lone pair occupying this HOMO (-2.8 eV) which
contributes most toδEt t E-

m (-2.7 eV). New bonds are
created by s-pz mixing, which is allowed inC3V but forbidden
in D3h. The lone pair adopts directional properties by the vibronic
process (Figure 3), sticking out toward the fourth ligand position
of a hypothetical tetrahedron (AX3E). As has been discussed
elsewhere,10 the molecules AH3 and NX3 possess pz2(a2′′2)-type
lone pairs, in contrast to the bulk of the considered compounds
with A1′(a1′ 2) ground and A2′′(a1′1a2′′1) excited states.

The DFT energyδEorb(a1) represents the energy changes of
only those MOs which are involved in the vibronic process
(Table 1).Nm is - see the preceding section- the quantity
which comprises part of this energy, induced by the nondiagonal
vibronic coupling. Additional shifts of the a1 MOs are caused
by the mixing of excited-state properties into the ground state

and vice versa (diagonal vibronic effect), on one hand, and by
the geometric changes during theD3h f C3V transition- the
latter contributing toErf

m - on the other hand (eqs 3, 4).Nm is
predominantly due to theR2′′ displacements with only a small
participation (e10%) of theR1′-type bond length alterations.10

In contrast to the DFT energy changesδEorb, δEP, δEel - which
depend on the chosen reference fragments (section II)- Nm is
an invariant. The DFT and the vibronic energy increments
correspond to a rather different partition of the total energy
changeδEt ) E-

m, yielding complementary physical insight.
The Franck-Condon energyEFC

m (eq 4) is expected to be
correlated with the chemical hardness (eq 6); this is so because
I andA increase and decrease, respectively, if the excited A2′′
state wave function is admixed to the A1′ ground-state wave
function.29 In the case of the considered molecules, (Nm)2 is
mostly very large with respect to (δEg,e

m/2)2 in eq 4, yielding
in good approximation eq 5. This implies, as has been
substantiated elsewhere,10 that Nm depends approximately
linearly on the chemical hardnessη (eq 6).

Both quantitiesNm and η(C3V) increase in the sequence If
Br f Cl f H f F and, less pronounced, from Bi to P (for the

hydrogen and fluoride compounds).The harder the molecules
and their atomic constituents are, the more susceptible to lone-
pair distortions they become (Figure 4).A similar result is
reported in a recent investigation on lead(II) compounds, where
the stabilization energies on distortion come out to be larger
the harder the ligand and the lower the coordination number
is.30 Deviations from thehardness rulemay occur in the case
of large initial splittingsδ (NH3, NF3) - here condition (eq 5)
is not satisfied- and if the two-state approximation does not
strictly hold (NX3 with X ) F to I). If Nm is considerably smaller
thanδ, the vibronic energy is approximately

(29) Pearson, R. G.Chemical Hardness; Wiley-VCH: Weinheim-New York,
1997; pp 89-95.

(30) Shimoni-Livny, L.; Glusker, J. P.; Bock, C. W.Inorg. Chem.1998, 37,
1853.

Figure 3. MO scheme of solvated PF3 for DFT optimizedD3h and C3V
geometries, with the 3s, 3p (in parentheses) and 3d (in square brackets) P
contributions (%) indicated (left). The symmetry-adapted LCAOs inD3h

originating from the ligand 2s and 2p orbitals are a1′; e′(σ) and a1′(σ);
2xe′(σ,π in-plane); a2′′(π out-of-plane); a2′,e′′(nonbonding)- those from
metal 6s and 6p are a1′(σ) and a2′′(π out-of-plane), e′(σ,π in-plane); the
low-lying 1a1′ and 1e′ MOs at =-30.3 eV are nearly nonbonding with
respect to the ligand 2s AOs and not shown. The energies of the parent
P(3s,3p) and ligand F(2s,2p) AOs for the effective charges of P and F in
D3h were estimated making use of the Kohn-Sham orbital energies and
eigenfuctions. The wave functions (ψ) underlying the lone-pair HOMO in
D3h (above) andC3V (below), and the activeR2′′ mode are also shown. The
contour plot diagram is constructed for(0.1 values ofψ; small P(3d)
contributions are seen in 3a1′.

Figure 4. Energy plot (eV) ofη(C3V) versusNm (eqs 3-6) for AX3 and
AH3 molecules and the charge-compensated PF4

- and PF52- complexes-
here,η (C2V) andη (C4V), respectively (straight line: least-squares fit).

Table 1. Energies from DFT Calculations (eV): Contributions
from Symmetry-Breaking Modes Solely, First Line; Total Energies
without and with Solvent, Second and Third Line, Respectively

δEP δEel δEorb δEorb(a1) δEt(′)

PF3 0.18 -0.09 -2.43 -7.39 -2.34
12.85 -4.16 -11.36 -11.15 -2.67
13.13 -4.26 -11.60 -11.22 -2.65a

SbF3 0.06 -0.02 -1.51 -4.74 -1.47
6.59 -2.40 -5.85 -6.62 -1.66

PF4
- 1.36 -0.38 -2.20 -0.79 -1.23

17.39 -5.54 -13.55 -5.48 -1.70
13.74 -4.35 -11.04 -5.81 -1.78a

SbF4
- 0.65 -0.14 -0.99 0.03 -0.48

7.47 -2.58 -5.54 -1.67 -0.65
PF5

2- 1.13 -0.35 -1.40 -0.81 -0.62
12.42 -4.00 -9.30 -3.50 -0.88
14.75 -4.77 -10.74 -4.91 -1.06a

SbF5
2- 0.60 -0.17 -0.68 0.08 -0.25

6.07 -2.10 -4.32 -1.26 -0.36

a δEt′ (eq 1b): contains the solute-solvent interaction energyδEs of
0.03,-0.13, and-0.29 eV for PF3, PF4

-, and PF52-, respectively.

(1/2)EFC
m = Nm (5)

η ) (I - A)/2
(I, ionization energy;A, electron affinity) (6)
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We further show in Figure 5 how the energy stabilization
|δEt| ) |E-

m| depends on the vibronic coupling energy
Evib

m = Nm - (1/2)δEg,e
m (eqs 4, 5). The deviations from the

full line represent the restoring energies, which increase from
the iodides to the fluorides (see hatched lines) and, less
pronounced, from Bi to P, as expected. It is also striking that
the hardest molecules possess the largest vibronic energiesEvib

and the largest stabilization energies|E-
m|. This is not the case

for the molecules with pz2- ground states (the hydrides and the
NX3 molecules), which represent a rather exotic type of
compounds within the lone-pair families.10 Nevertheless, Figure
4 presents evidence that the nondiagonal vibronic coupling
energyNm is the energetically determining quantity for the
distortion process in the case of s2-type lone pairs, at least for
the three-coordinate molecules considered here. We finally note
that the inclusion of a polarizable solvent does not affect the
DFT energies significantly (Table 1), as expected for an entity
without charge.

V. The Coordination Number 4

Geometric instability of a tetrahedral complex AX4
- may

occur if the a1 HOMO, housing the ns2-type lone pair, which is
antibonding and strongly delocalized toward the ligands,
interacts with the LUMO of t2 symmetry originating from the
3p(P) AOs (Figure 6). The admixture donates directional
properties to the lone pair, thus inducing a distortion, whose
symmetry is determined by the two vibronically activeτ2 modes
(A1 X τ2 X T2 PJT-coupling)- one of stretching and one of
bending nature (Figure 6a). The highest symmetry distortions
lead intoC3V andC2V point groups, the former being induced
by an equal mixture of all threeτ2 components and the latter
corresponding to just one component (lone-pair orientation|C3

and |C2, respectively). Both pathways yield pseudotrigonal-
bipyramidal AX4E geometries; in theC2V case, the lone pair is
located in the equatorial plane [A(X2E)X2], while it takes the
position of an axial ligand inC3V [A(X 3)(XE)]. The vibronic
interaction matrix is analogous to that of eq 2. The coupling
occurs with theτ2 mode possessing the lower frequency, which
is characterized by both bending and stretching properties.
Similar to the octahedral case, the excited 3-fold degenerate

state is Jahn-Teller unstable with respect to some active
vibrations in Td [T2- (ε + τ2) problem].5 The excited-state
admixture to the ground state via the nondiagonal coupling term
N is thus expected to add distortion components alongε (see
Figure 6a) to the final complex geometry. The latter influence
is indeed striking and would lead into theD2d point group; the
S4 axis in the finalC2V symmetry is lost, however.

Inspecting complexes of the type AX4
- (A ) N to Bi; X )

F to I), we find that, in contrast to the AX3 molecules, only
part of them exhibit lower-symmetry distortions. Leaving aside
the NX4

- polyhedra at this stage, the tetrahedra with the highest
hardness values are predicted by DFT to distort. This is in
agreement with the trends in Figure 4, where such molecules
are observed to be the most sensitive to vibronic coupling.
Furthermore, it turns out that in these cases theC2V distortion
is more stable than theC3V geometry, which is still preferred
with respect toTd, however. As has been explicitly checked,
all vibrational frequencies are real inC2V, the corresponding
minima thus representing genuine and absolute minima of the
ground state. In contrast, theTd geometry is characterized by
one imaginary frequency ofτ2 symmetry, indicating vi-
bronic instability. Explicitly, the complexes PF4

-(-1.70),
AsF4

-(-0.82), SbF4-(-0.65), and PCl4
-(-0.31) are predicted

to undergoC2V distortions (Table 2) along one of the threeS4

axes of the parent tetrahedron, with stabilization energiesδEt

(eV) in parentheses. Figure 7a illustrates for the SbF4
- complex

how the system stabilizes along theTd f C2V distortion path,
with the two minima respresenting the equivalent distortions
along the(zaxis (Figure 6a). By contrast, the InF4

- polyhedron,
lacking the lone pair, does not show vibrational instability. The

Figure 5. Energy plot (eV) of|δEt| ) |E-
m| versusEvib

m (eqs 3-5) for
AX3 molecules with s2-type and for AH3 compounds with pz2- ground states
in D3h. The deviations from the full line are the restoring energiesErf

m; the
hatched lines indicate increasingErf

m values in the sequence I- f F-.

Evib
m = -Nm2/δ (3a)

Figure 6. MO scheme of the PF4- complex (energies in eV) in a solvent
continuum for DFT optimizedTd andC2V geometries, with the 3s, 3p (in
parentheses), and 3d (in square brackets) phosphorus contributions (%)
indicated. The symmetry-adapted LCAOs inTd originating from the ligand
2s and 2p AOs are a1(σ); t2(σ) and a1(σ); t2(σ + π); e, t1, t2 (nonbonding),
respectively; the P(3s,3p) AOs transform as a1(σ); t2(σ + π). TheTd MOs
transform inC2V as follows: ef a1,a2; t1 f a2, b1, b2; t2 f a1(||z), b1(||x),
b2(||y). The energies of the parent P(3s,3p) and ligand F(2s,2p) AOs for
effective charges of P and F inTd were estimated making use of the Kohn-
Sham orbital energies and eigenfuctions. The nonbonding 1a1 and 1t2 MOs
from 2s(F) at∼-28.5 eV are not shown. The wave functions underlying
the lone-pair HOMO inTd and the resulting MO inC2V are also depicted.
(a) TheTd f C2V ligand displacements according to thez-component of
the bending and stretchingτ2 modes, as well as the higher-symmetry
component of theε mode.
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compexes BiF4-, AsCl4-, SbCl4-, and PBr4- are found to
possess either very small|δEt| values (<0.1 eV) orτ2 vibrations
with pronounced soft mode behavior (see Figure 7b), suggesting
fluxional properties. Yet also complexes such as AsBr4

-, in
comparison to GaBr4

- without the lone pair, possess one rather
softτ2 mode- AsBr4-, 169 (R1), 212 (τ2), 39 (ε), 28 (τ2) cm-1;
and GaBr4-, 184 (R1), 254 (τ2), 55 (ε), 92 (τ2) cm-1. While the
vibrational energies of the former complex are generally smaller
by about 20%, due to the larger ionic radius of As3+ as compared
to that of Ga3+, the decrease of the lower energyτ2 mode is
much more pronounced (soft mode behavior as in Figure 7b).
External strains of lower symmetry, such as small disturbances
by solvent effects or cooperative elastic and/or packing effects
in solids, may stabilize the system in a shallow minimum along
the C2V distortion path.31

The origin of the less pronounced lone-pair effect, if one
compares the AX4- complexes with the corresponding AX3

compounds, is mainly a distinctly lower vibronic coupling
energy. This is readily deduced from Table 3, where we have
listed the various energy contributions according to the vibronic
model (eqs 3, 4) for PF3, PF4

-, and PF52- as model species. A
polarized solvent continuum was added to compensate the
negative charges of the latter two complexes. The energies for
the PF4- polyhedron were calculated utilizing a procedure which
is outlined in the Appendix and which follows the vibronic
concept elaborated for the AX3 molecules.10 The calculations
are based on theE-

m ) δEt′ - δEsolv energies (eq 1) without
the solvent energy contributions. Though the MO energies are
strongly stabilized by the polarization effects due to the solute-
solvent interaction as compared to the bare anions,Esolv itself
has no influence on the intrinsic ground-state properties of the
complex. However, the solvent does affectEFC

m, because the
electronic transition induces a rearrangement of the charges in
the solute-solvent contact region.32 Though this energy con-
tribution is not precisely imaged by a solvent continuum without
mass, we have included it (Esolv(E+

m) - Esolv(E-
m)) in theEFC

m

energies, this enhancing the total transition energies by less than
10%. The vibronic quantities collected in Table 3 are very near
to those which can be estimated from the DFT energy incre-
ments in Table 1. Keeping in mind thatδEP andδEel are (nearly)
completely part of the restoring energy, the increase of these
quantities from PF3 via PF4

- to PF5
2- can be directly translated

into a corresponding increase ofErf, using the PF3 molecule,
where a complete vibronic calculation has been performed10 as
the reference (Table 3). The derived nondiagonal coupling
energy Nm is found to be reduced by nearly 30% when
increasing the CN from 3 to 4 and becomes smaller by about
the same percentage proceeding from PF4

- to PF5
2-. A similar

gradation is deduced if one analyzes the potential energy
curvatures in the vicinity of the high-symmetry reference
geometries (Supporting Material A). The restoring energy seems
to only slightly increase if the number of ligands becomes larger,
while the vibronic energyEvib

m decreases, but still dominates
with respect toErf

m, mostly due toNm. Also in these cases,Nm

is the energetically dominating vibronic contribution; that is,
eq 5 is valid in good approximation.

We have also calculated the chemical hardness, utilizing eq
6, but with solvent addition (eq 6a).ηs′ ) (1/2)(Is′ - As′) is
rather small, because the solvent energy stabilizes the anions

(31) Reinen, D.; Atanasov, M.Magn. Reson. ReV. 1991, 15, 167. (32) Hush, N. S.; Reimers, J. R.Chem. ReV. 2000, 100, 775.

Table 2. Bond Distances (Å) and Bond Angles (deg) for the
Geometrically Optimized C2v (CN ) 4) and C2v(C4v) (CN ) 5)
Geometries and Bond Length Changes δR (Averaged) from
Td to C2v (CN ) 4) and δRax(D3h), δReq(D3h) from D3h to C2v(C4v)
(CN ) 5) (For Definitions See Figures 6A and 9a) of Some AX4

-

and AX5
2- Complexes; Dissociation Enthalpies (eV) According to

Eq 7a,bb Are Also Listed - Second and Third Line, with Solvent
and Experimental34 Values, Respectively

δR R1 R2 θ1 θ2 ∆H(s)

PF4
- -0.12 1.81 1.68 188 98 2.75

-0.09 1.82 1.67 188 91 0.72
1.74 1.60 192 100

AsF4
- -0.08 1.93 1.80 186 98 2.97

SbF4
- -0.08 2.07 1.98 189 97 3.32

PCl4- -0.04 2.41 2.15 168 100 1.23

δRax(D3h) δReq(D3h) Rap R1 ) R2 θ1 ) θ2 ∆H(s)

PF5
2- -0.02 -0.14 1.71 1.92 86 -2.70

-0.04 -0.15 1.72 1.89 83c -0.02
AsF5

2- -0.01 -0.08 1.83 2.03 88 -2.14
SbF5

2- -0.03 -0.08 2.00 2.16 86 -1.55
PCl52- 0.02 -0.03 2.19 2.49 95 -2.53

a δRax(D3h): bond length change fromD3h (axial) toC4V (equatorial,R1).
δReq(D3h): bond length alteration fromD3h (equatorial) toC4V (apical,Rap).
b ProcessesC2V(CN ) 4) f C3V(CN ) 3) and C4V(C2V) (CN ) 5) f
C2V(CN ) 4). c C2V geometry, withθ1 ) 83° andθ2 ) 85° (see Figure 9).

Figure 7. Potential energy plots versus the (a)τ2-, ε-, and R1-type
displacementsτ (Td f C2V) for SbF4

- in comparison to InF4- - linear
scaling of the geometric changes from theTd optimized (R ) 2.10 Å) to
the C2V geometry of SbF4- (R1 ) 2.07 Å, θ1 ) 189°; R2 ) 1.98 Å, θ2 )
97°). (b) τ1u displacements for the octahedral complexes Sb(In)Br6

3-

corresponding to the lower energyτ1u mode for SbBr63- and retaining a
linear variation of the given coordinates also for larger deviations fromOh;
the inset represents the unit distortion (τ1u ) 1.0).

Table 3. Energies E-
m and Erf

m, Evib
m, EFC

m, Nm As Calculated
from the Vibronic Model (PF3 and PF4

- - See Appendix) and/or
Estimated (See Text) from the DFT Energies in Table 1 (PF4

-,
Second Line, and PF5

2-), for PFn
(n-3)- Polyhedra in a Solvent

Continuum (in eV); the Hardness Values ηs (See Text; in eV) of
the Distorted Polyhedra Are Also Listeda

E-
m b Erf

m Evib
m EFC

m/2 Nm ηs

PF3
c -2.67 2.47 5.14 4.53 4.49 7.54

PF4
- -1.65 2.40 4.05 3.37 3.28 5.91

-1.65 2.7 4.4 3.37 3.2 5.91
PF5

2- -0.76 2.9 3.7 2.51 2.2 4.98

a For the exact definition of all quantities, see text.b δEt′ ) δEt
(E-

m) + δEs (see eq 1).c Bare molecule.
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and the more that happens, the higher the negative charge is.
However, the adoption of the hardness as a measure of intrinsic
complex properties is more appropriate, if used without taking
the solvation energies into account (ηs).29 The thus definedηs

values and the nondiagonal vibronic coupling energiesNm (Table
3) mirror the basic trend, thatpolyhedra AXn-(n-3) become softer
with increasing coordination number n and anionic charge, and
correspondingly possess a less pronouncedVibronic instability.
Thus PF4- is located in Figure 4 near to BiF3, while PF5

2- is
positioned very close to BiCl3. This trend also implies that the
vibronic energiesEvib

m of the soft complexes such as As(Sb)Br4
-

and, in particular, their nondiagonal componentsNm are not large
enough anymore to still induce negativeδEt energies (eqs 3,
4). The quantitiesEvib

m and Nm are still finite in magnitude
though (N2/δ < Erf; eq 3a), reducing the restoring energy
(Erf f Erf

eff) and thus inducing soft mode properties. An analysis
of the various contributions from theR1 stretching, theτ2

stretching, and the angularτ2 and ε bending modes to the
vibronic coupling energy is given in the Appendix.

The optimizedC2V geometries are rather close to a pseudo-
trigonal-bipyramid A(X2E)X2 and listed in Table 2. The angle
θ1 (see Figure 6a) is near to linearity,θ2 is roughly 100°, and
the bond lengthsR1 and R2 differ by about(0.06(1) Å from
the average spacing in the case of the fluorides and considerably
more, by(0.13 Å, for PCl4-. The average distance decreases
by δR ≈ 0.08(4) Å on moving from theTd parent geometry to
C2V. This is readily explained by an antibonding s2-type lone
pair with repulsive properties toward the ligands (Figure 6),
which adopts partly directional pz character by vibronic mixing
when passing fromTd to C2V, thus avoiding stronger interactions
with A-X bond electron densities. We recall that the deciding
energy contribution to the stabilization of the distorted geometry
is the gain in bond energy by the s-pz hybridization.2 The
comparison with well-established structural data for the salt
(NMe4)PF4 yields that the calculated spacings are too large by
about 5%, while there is reasonable agreement with reported
bond angles. AsF4- is also claimed to have a near-to-trigonal
bipyramidalC2V structure.11 The salt KSb2F7 contains isolated
SbF3 and SbF4- entities, the latter with aC2V distortion
exceeding the one calculated (Table 2).11 However, the DFT
geometry refers to an isolated SbF4

- complex, which is not
subject to lattice strains and charge compensation; the latter
influences may well shift the minimum of the rather flat potential
curve (Figure 7a) to higher nuclear displacements. In the crystal
structures of the anionic complexes SbCl4

-, BiBr4
-, and BiI4-

with large countercations, SbCl4
- possesses aC2V geometry with,

in the lone-pair direction, long distance interactions to two
further Cl- ligands of neighbored complexes, while the BiIII

polyhedra are already close to octahedra, which possess two
common ligands with adjacent polyhedra.11 This finding is
indeed consistent with a vibronic coupling strength which
decreases the softer the considered entities are. The long distance
interactions with two ligands from neighbored poyhedra can
be either looked at as a lattice strain ofC2 symmetry, which
supports the PSJT interaction, or alternatively as the conse-
quence of a lone-pair distortion of an octahedral complex
(section VII).

A clean separation of the energy changes, which occur during
the Td f C2V transition along theτ2 and, through mixing with
the excited state, along theε distortion path, from those induced
by the R1 stretch (bond length reductionδR, see Table 2), is
generally not possible (presence of significant nondiagonal terms
between theR1 andτ2 stretching displacements). Nevertheless,
the analysis for PF4-, AsF4

-, and SbF4-, where the angular
nuclear motions induce the largest part ofδEt (Tables 1, 2),
leads to essentially the same results as for the AX3 molecules.
Again, δEP is nearly exclusively a radialR1 effect due to the
shrinkingδR of the average bond length (Table 2), which does
not stabilize the distorted structure. It is the orbital energyδEorb,
mainly the angularτ2 andε contributions (see Appendix), which
enforce negativeδEt ) E-

m energies.
If a polarizable continuum for charge compensation is

included into the calculations for PF4
-, the magnitudes of|δEP|,

|δEel|, and|δEorb| become smaller by about 20%, yielding values
which are only slightly larger than those of PF3. The charge
distribution has obviously changed considerably by the complex-
solvent interaction, by inducing significant differences of the
average bond lengths with and without solvent (Table 2); thus,
δR is less strongly reduced during theTd f C2V transition than
in the case of the bare species. It is remarkable, however, that
δEt changes only marginally by the solvent influence.

The MO diagram of solvated PF4
- (Figure 6) visualizes the

orbital shifts when transforming theTd into C2V geometry. Not
only the a1 MOs are involved, but also, in particular, the
occupied bonding b1 MOs, which are correlated with the
phosphorus 2px orbital and the shorterR2 spacings, participate
and are strongly stabilized. This is readily deduced from Table
1, where, in contrast to the AX3 molecules, not onlyδEorb(a1),
but also (δEorb - δEorb(a1)), representing the shifts of all other
MOs besides those of a1-type, contribute strongly to the
stabilization of the distorted molecule. The HOMO is antibond-
ing with 41% 3s(P) character and stabilized via 3pz(P) admixture
by -1.3 eV. The solvent has a stabilizing effect of about-4.4
eV on the bonding and nonbonding MOs inTd andC2V, with
only rather small individual deviations of the MOs from this
value. The HOMO stabilization for the bare PF4

- anion (-0.50
eV) is much less pronounced than for the solvated complex.

We now analyze the complex stabilities with respect to the
dissociation of one X- ligand, with (∆H s) and without (∆H)
solvent:

A strong solvent influence on the dissociation enthalpy is
calculated for PF4- (Table 2). Because the small and rigid F-

anion is stabilized more strongly (-4.4 eV) than the complex
(-2.5 eV) by the solvent, the polarizable continuum favors the
dissociation process mainly by these energy increments
(∼ -2 eV). However, PF4- turns out to be stable also as a
solvated species (∆H s > 0), and the trend of∆H in the sequence
from PF4

- to SbF4
- (bare anions) also substantiates that the

complex stability increases, in accord with the experimental
evidence. Figure 8a illustrates the various stabilization pos-
sibilities of the tetrahedral PF4

- anion, with and without solvent.
The complex may gain energy via three vibronically induced
distortion processes, from which two,Td f C2V andTd f C3V,
were discussed before (see Figure 6a). The third follows the
C3V distortion path in the opposite direction,Td f C3V(i), with

PF4
- (solv) f PF4

0 (solv) + e- (vacuo)+ Is′

PF4
- (solv) + e- (vacuo)f PF4

2- (solv) + As′ (6a)

AX4
- f AX3 + X- + ∆H (s) (7a)
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the lone pair extending toward one of the four ligands, favoring
a geometry with one long and three shorter P-F spacings. While
for the bare species the latter pathway leads to a relative
minimum (saddle point in a multidimensional description
including the dependence on all active modes) and corresponds
to a finite distortion, the complete loss of one ligand according
to eq 7a is predicted in the case of the solvated anion (Td f
C3V(i): -1.20 eV). For both the bare and the solvated PF4

-

anion, the lowest energy is calculated for theC2V-type geometry
of a pseudotrigonal-bipyramid P(F2E)F2

- with δEt = -1.7 eV,
however (Table 1).

If one turns to the NX4- polyhedra (X ) F, Cl) in a
polarizable solvent, a distinctly different energetic situation is
met, with the dissociationTd f C3V(i) (-1.30 eV) preferred to
the Td f C2V (-0.96 eV) andTd f C3V (-0.39 eV) distortion
paths (Figure 8b). Though the driving force for the dissociation
is clearly the pronounced PSJT stabilization of NF3 (D3h f
C3V: -3.5 eV10), we regard the strong tendency of NX4

-

complexes to reduce the CN partly as an effect which is induced

by the size mismatch between N and X, whereby the small
central atom induces strong ligand-ligand repulsions in the case
of larger CNs (ionic size effect). If one calculates the∆H s

enthalpies of the process (7a) fromTd (AF4
-) to D3h (AF3),

considering the non-lone-pair atom A) BIII in comparison to
NIII , one finds+1.07 and+2.28 eV for BF4-/BF3 and NF4

-/
NF3, respectively. These rather low energy values indicate
indeed for both complexes a soft mode behavior along theC3V-
(i) distortion path already without taking the vibronic stabiliza-
tion of NF3 from D3h f C3V into account. The significance of
such ionic size influence becomes apparent also in the (hypo-
thetical, energetically less favored)C2V geometries of NF4-

(Figure 8b) and NCl4
-; here, in contrast to the results for the

other AX4
- complexes, the stretchingτ2-type bond length

changes are extremely large, the differencesR1 - R2 (Figure
6a) amounting to 0.45 and 0.65 Å for X) F and Cl,
respectively, a clear tendency toward a (2+ 2) coordination,
that is, a reduction of the CN. Indeed, NX4

- complexes have
not been observed thus far. In contrast to the solvated NF4

-

anion, the bare complex is found to be stable toward dissocia-
tion; δEt ) E-

m is calculated to be-0.37 eV forTd f C3V and
-0.67 eV forTd f C2V (R1 ) 1.85 Å,R2 ) 1.41 Å,θ1 ) 167°,
θ2 ) 102°).

It is finally interesting to note that the AX4- complexes in
their lowest excited T2 states are calculated by DFT to possess
approximately square-planar shapes. This is in agreement with
the vibronic coupling model, because this geometry (D4h) is the
extreme of a tetragonalD2d-type compression along one of the
three S4 axes in Td which is predicted to occur as the
consequence of a first-order JT effect along theε displacement
path (vide supra).

VI. The Coordination Number 5

The parent symmetry of complexes AX5
2- (D3h) is the same

as the one of the AX3 molecules. However, in contrast to the
MO scheme in Figure 3, the LUMO is not the weakly
π-antibonding a2′′ MO (corresponding to the central atom pz

orbital) anymore, but a (σ + π)-antibonding e′ MO (originating
from the central atom in-plane px, py orbitals). Because the pz

orbital of A is strongly involved inσ-interactions with the axial
ligands now, it surpasses the first excited e′ MO in energy. The
PSJT interaction is of A1′ X ε′ X E′ nature accordingly, and
the vibronically active modes are the threeε′ vibrations (one
stretching, two bending) inD3h (Figure 9). The corresponding
displacements lead into theC2V point group, eventually reaching

Figure 8. Total energies for the tetrahedral complexes PF4
- (with, below,

and without solvent) (a) and NF4
- (with solvent) (b) along theC3V(i) (C3V)

displacement path, in dependence on the long(short) P(N)-F spacingR.
Every indicated energy was optimized with respect to the other P(N)-F
spacings and the F-P(N)-F angles; the energies for the optimizedC2V
distorted complexes are indicated on the left.

Figure 9. The highest symmetry components of the three vibronically active
ε′ modes of AX5

2- complexes inD3d symmetry (above), and the shapes of
the HOMO in the reference (D3h) and in the final (C2V) optimized geometry
for PF5

2- (below).

Predictive Concept for Lone-Pair Distortions A R T I C L E S

J. AM. CHEM. SOC. 9 VOL. 124, NO. 23, 2002 6701



C4V as a special geometry. The latter is close to the pseudo-
octahedral coordination AX5E predicted by the VSEPR model.
The change of the s-type HOMO inD3h to the corresponding
MO in C2V(C4V) - here the apical ligand does not contribute-
is characterized by pronounced directional p-admixture. A
thorough treatment of the symmetry aspects of the A1′ X ε′ X
E′ interaction, for five-coordinated Cu2+ complexes, is given
elsewhere.33

The overall appearance of geometric distortions for AX5
3-

complexes is similar to the results obtained for the tetrahedral
complexes. While PF52- (-0.88), AsF52- (-0.37), SbF52-

(-0.36), and PCl5
2- (-0.14) are distinctly stabilized in aC4V

geometry- δEt energies (eV) in parentheses- the other
complexes show either only very small stabilization energies
D3h f C2V(C4V) - δEt between-0.06 and-0.01 eV: PBr(I)52-,
AsCl52-, SbCl52- - or mostly soft mode behavior. Correspond-
ingly, the first mentioned four complexes possess imaginary
frequencies for one of the threeε′ modes (actually a mixture of
the three symmetrized displacements in Figure 9). TheNm/η
correlation depicted in Figure 4 is also applicable to the CN)
5; a further reduction of the nondiagonal coupling termNm and
of the chemical hardness occurs, proceeding from the AX4

- to
the AX5

2- complexes (Table 3). For obvious reasons- see the
discussion of the NX4- anions in the preceding section- we
do not treat NX52- complexes.

Here the totally symmetric stretching modes (R1′ axial and
equatorial) also participate in the distortion process, reducing
the average bond lengths (seeδRax andδReq in Table 2), with
the same difficulty to exactly separate the energy contribution
from the symmetry-breakingε′ stretching vibration from that
due to the totally symmetric stretch (R1′ in-plane), if the latter
adds essentially toδEt. Nevertheless, the two examples listed
in Table 1 demonstrate again thatδEP and δEel represent
predominantly energy effects from the twoR1′ modes, while
δEt is anorbital effect.

The calculated polyhedron geometries (Table 2) are very near
to C4V with angles between the apical and the equatorial bonds
of 90 ( 5°, in accordance with the approximate tetragonal
pyramidal shape of SbF5

2- and SbCl52- (δEt ) -0.36 and
-0.02 eV, respectively). A quantitative comparison of the
reported structural results with the DFT geometries makes no
sense, because data for the charge-compensated complexes are
not available. Turning to PF52-, the addition of a solvent
continuum does again not changeδEt essentially (Table 1), but
leads to an increase ofδEP, |δEel|, and|δEorb|, such that they
are now consistent with the trend of the corresponding energies
for PF4

- and PF3.
The complex stabilities (eq 7b) are strongly influenced by

the solvent medium (see the∆H (s) values in Table 2). The large
and doubly charged PF5

2- anion is stabilized in a distinctly more

pronounced way (-9.7 eV) than both PF4- (-2.5 eV) and F-

(-4.4 eV), as compared to the bare complex, yielding a
vanishing∆H (s) energy. Hence, a slightly negative free energy
change∆G (s) is expected, because the right side of equilibrium
(7b) is favored by entropy. In agreement, a PF5

2- complex is
not reported. Adopting a solvent stabilization energy of∼2.5

eV as a rough scaling measure, we may draw the qualitative
conclusion that SbF52-, AsF5

2-, and SbCl52- (∆H ) -1.58 eV)
are stable species, while this is doubtful in the case of PCl5

2-.
The dissociation process (7b) can be looked at as mainly or
partly induced by vibronic coupling. The solvated trigonal-
bipyramidal PF52- complex, for example, may gain energy either
by distortion along oneC2 axis toward the PF5E2- geometry-
PF5

2- (D3h) f PF5
2- (C2V ≈ C4V) - or by a distortion in the

inverse directionC2V(i) - PF5
2- (D3h) f PF4

- (C2V) + F- -
with the lone pair sticking out toward one of the in-plane F-

ligands (see Figure 9). Both alternatives lead to the same
stabilization energy of about-0.8 eV (Tables 1, 2), the entropy
contribution rather favoring theC2V distorted PF4- polyhedron
than the PF52- anion withC4V geometry, as just discussed. This
consideration is analogous to that in section V, where also two
vibronic pathways in opposite directions were proposed.

VII. The Coordination Number 6

Geometrical instability of an octahedral AX6
3- complex may

occur, if the A1g(ns2) ground state interacts with the T1u excited
state, corresponding to the transfer of a single electron from
the antibonding a1g HOMO into the more strongly antibonding
t1u LUMO in the simplest case (Figure 1, section III). The
involved vibrations are the bending and stretchingτ1u sym-
metrized displacements which mix with theR1g andεg modes
in the case ofC4V, or with R1g andτ2g if C3V andC2V distortions
are considered. All geometrically optimized octahedral com-
plexes AX6

3- (A ) P, As, Sb, Bi; X) F, Cl, Br, I), with the
exception of PF63-, AsF6

3-, and SbF63-, possess real vibrational
energies, implying an energy minimum at octahedral geometry.
The same result holds for the solvated anions, though the
vibrational energies get larger (see section II). In contrast, the
dissociation enthalpies∆H for the bare complexes (eq 8, Table
4) are strongly negative in all cases. We must, therefore, regard
the bare AX6

3- anions withOh energy minima as metastable.

The finding of minima at regularOh geometries for almost all
AX6

3- octahedra confirms the key observation that with
increasing CN the vibronic activity of the lone pair decreases,
though it does not vanish. Indeed, if one compares, for example,
SbIII with the corresponding closed shell system without the(33) Reinen, D.; Atanasov, M.Chem. Phys.1989, 136, 27; 1991, 155, 157.

AX5
2- f AX4

- + X- + ∆H (s) (7b)

Table 4. Dissociation Enthalpies According to Eq 8, without (∆H)
and with (∆H s)a a Polarizable Solvent Continuum (in eV), for
PF6

3- and SbF6
3- in Comparison to the Non-Lone-Pair Complexes

AlF6
3- and InF6

3-

∆H5 ∆H4 ∆H3 ∆H5
s ∆H4

s ∆H3
s

PF6
3- b -7.23 -9.93 -7.18 -0.68 -0.70 -0.03

PF6
3- c -6.35 -8.23 -4.50 0.38 0.78 2.70

AlF6
3- c -6.67 -8.94 -3.78 0.51 1.09 4.00

SbF6
3- b -5.76 -7.31 -7.01 0.0 0.7 1.9

SbF6
3- c -5.40 -6.66 -5.35 0.4 1.4 3.6

InF6
3- c -5.66 -3.99 -2.44

a Estimated enthalpies for SbF6
3- (see section II).b For the processes

eq 8 from AF6
3- (Oh) to AF5

2- (C4V), AF4
- (C2V), and AF3 (C3V),

respectively; A) P, Sb.c For the processes eq 8 from AF6
3- (Oh) to AF5

2-

(D3h), AF4
- (Td), and AF3 (D3h), respectively; A) P, Sb.

AF6
3- f AF5

2- + F- + ∆H5
(s)

AF6
3- f AF4

- + 2F- + ∆H4
(s) (8)

AF6
3- f AF3 + 3F- + ∆H3

(s)
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lone pair (InIII ), the rather flat potential surface of SbBr6
3-, for

example (Figure 7b), suggests soft mode behavior (Evib < Erf);
already small external disturbances may modify it such that
energy minima appear at finiteτ1u nuclear displacements. In
accord with such a concept, SbIII appears in a regular octahedron
in the mixed-valent compound (NH4)4[(SbIIIBr6)(SbVBr6)],35

while the strain along theC3 axis in the complex anions A2Br9
3-

(A ) SbIII , BiIII ), two octahedra with a common face, induces
a considerableC3V distortion with short(long) A-Br distances
of 2.63(3.00) Å for SbIII and 2.94(3.24) Å for BiIII .11 In the
hexagonally close-packed structures of AsI3, SbI3, and BiI3 -
where again a lattice strain along C3 is present- one observes
highly C3V distorted AsI63- 11 and regular BiI63- octahedra,36

with SbI63- representing an intermediate case.11 A strain ofC2

symmetry is encountered in (H2DAH)BiI 5 (DAH ) diaminocy-
clohexane),37 where one BiI63- octahedron shares cis-vertexes
with two neighbored octahedra in one-dimensional zigzag
chains. Here, three pairs of Bi-I bonds appear:bridging ones
(3.30 Å), terminal ones trans to the bridging I- ligands (2.91,
2.96 Å), and terminal ones perpendicular to the chain (3.06,
3.10 Å), yielding in good approximationC2V distorted octahedra.
Analogous compounds with even larger countercations have
been recently reported.38 All of these examples nicely follow
the trend of the hardness rule according to Figure 4.

Turning to the vibronically unstable species PF6
3-, AsF6

3-,
and SbF63-, we first note that in particular PF6

3- possesses
enthalpies∆H and ∆H s according to eq 8, which are rather
similar to those of the non-lone-pair complex AlF6

3-, if the
additional Vibronic stabilization energies from D3h to C4V , Td

to C2V, and D3h to C3V for PF5
2-, PF4

-, and PF3, respectiVely,
are excluded(Table 4). The solvated AlF63- anion is calculated
to be stable with respect to dissociation, as would be the PF6

3-

complex without taking the lone-pair stabilization energies of
the five-, four-, and three-coordinate entities into account.
Otherwise one finds that PF6

3- should undergo dissociation,
yielding the butterfly-shaped PF4

- as the stable entity (∆G4
s <

∆G5
s). Figure 10 illustrates theC4V, C2V, andC3V displacement

pathways of the solvated PF6
3- anion in dependence onR, the

latter denoting the long bond lengths of the distorted complex
(one, two, and three, respectively); every point corresponds to
a geometry optimization in which only the respectiveRspacing
is kept constant. It is interesting that the∆H3

s curve displays a
(relative) minimum at a finite distortion on theC3 displacement
path, which is more stable than the completely (PF3 + 3F-)
dissociated complex. One vibration calculated for this geometry
possesses an imaginary frequency, specifying the relative
minimum as a saddle point in the multidimensional∆H (s) versus
τ1u space- as expected, because the final geometry with the
lowest energy isC2V (∆H4

s).

We conclude from the∆H s enthalpies that it is the vibronic
interaction which causes the geometric instability. However, the
dissociation energy is already small without the vibronic effect
(AlF6

3- and PF63- in Table 4c), indicating a rather flat potential
surface. This effect enhances the extent of the vibronic geometry

change and eventually leads to the complete loss of one (C4V,
CN ) 5) or two (C2V, CN ) 4) ligands. Phenomena of this
kind are particularly pronounced, if the central ion-to-ligand
size ratio becomes smaller than a certain critical value. We prefer
to separate thisionic size effectfrom the lone-pair phenomenon
(section III), though one may regard it as induced by vibronic
coupling as well.39

Recalling that solvation tends to strongly stabilize highly
charged anionic complexes toward dissociation (see Table 4),
the solvated SbF63- complex is expected to be stable only in
the absence of vibronic coupling, similar to PF6

3-. Otherwise,
distinctly positive∆H4

s and∆H3
s values, but a vanishing∆H5

s

and hence a negative∆G5
s energy, result. In agreement with

this analysis, SbX6- entities with X ) Cl-, Br-, I- are well
characterized,11 while the fluoride complex has not been
synthesized so far. Figure 10 illustrates the energetic situation
for SbF6

3-.

We summarize that the tendency toward smaller vibronic
coupling effects when increasing the CN from 5 to 6 is further
continued, with only three vibronically unstable six-coordinate
complexes AF63- (A ) PIII , AsIII , SbIII - solvated) left. A
discussion of the bond covalency based on the MO schemes
and the vibronic coupling model is given in the Supporting
Information for PF63- and BiF6

3- as model examples.

(34) Wiberg, N. Lehrbuch der Anorganischen Chemie; Walter de Gruyter:
Berlin, New York, 1995; p 755.

(35) Lawton, S. L.; Jacobson, R. A.Inorg. Chem.1966, 5, 743.
(36) Ruck, M.Z. Kristallogr. 1995, 210, 650.
(37) Mousdis, G. A.; Papavassiliou; Terzis, A.; Raptopoulou, C. P.Z. Natur-

forsch. 1998, 53b, 927.
(38) Mitzi, D. B.; Brock, P.Inorg. Chem.2001, 40, 2096. (39) Bersuker, I. B.; Stavrov, S. S.Coord. Chem. ReV. 1988, 88, 1.

Figure 10. The dissociation displacement paths according to the processes
(eq 8) for the solvated complexes PF6

3- (above) and SbF63- (below). The
minimum energies for the optimized geometries are plotted versus the longer
spacings of theC4V, C2V, andC3V distorted octahedra; the enthalpies for the
complete dissociation (R f ∞) are given on the right.
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VIII. Summary and Conclusions

It was the purpose of this contribution to analyze the
stereochemical and energetic activity of lone pairs in terms of
certain chemical parameters. Molecules and complexes AXn

-(n-3)

(A ) N to Bi; X ) F to I; n ) 3-6) were chosen as model
examples:

(1) The vibronic coupling model is a pictorial and sensible
approach, which does not only provide precise information about
the nuclear displacements from the high-symmetry parent
geometry to that of the distorted one, but also yields criteria,
whether a distortion occurs or not. Utilizing calculated DFT
energies, the key parameters, which govern the geometry
change, can be derived, such as the vibronic energyEvib

m and
its nondiagonal componentNm. The tetrahedral complexes
(vibronically active modes:τ2, ε) are found to eventually distort
along aC2 axis (f C2V), theC3 path (f C3V) being less favored.
The trigonal-bipyramidal complexes are predicted to deform
towardC4V (active modes,ε′), while some octahedral complexes
(active modes,τ1u, εg) undergo dissociation as the consequence
of vibronic coupling.

(2) The quantity, which dominates lone-pair distortions in
the considered cases, is the vibronic coupling stength. It is
correlated with an observable quantity, the chemical hardness
(Figure 4), implying that the harder a lone-pair compound AX3

and its constituents are, the more susceptible to distortion the
molecule becomes. Proceeding to the (charge-compensated)
complexes (CN) 4-6), one additionally finds that the higher
the CN and the negative charge of a lone-pair complex are, the
softer and the more stable the complex becomes toward
deformation. Thus, while all AX3 molecules distort, only part
of the AX4

- and AX5
2- complexes deform. Nearly all octahedral

AX6
3- complexes remain in theOh geometry with a stere-

ochemically s2 inert pair, with the exception of those with A)
P, As, Sb, and X) F.

(3) The extent of distortion away from the parent geometry
depends not only on the vibronic coupling but also on the
restoring energy, which is frequently very small due toionic
sizeeffects (section VII). Such soft mode behavior can lead to
complete dissociation in the case of vibronic instability (i.e.,
SbF6

3- f SbF5
2- + F-) or - if the complex is vibronically

stable in the high-symmetry parent symmetry- frequently to
pronounced sensitivity toward external strains (imposed by the
host structure, for example).

(4) The vibronic coupling effect turns out to be a pure orbital
overlap phenomenon due to s-p mixing creating a new
covalency.5 It inevitably accompanies geometric distortions
according to the vibronically active symmetry-breaking modes.
The observed increase of the electron pair repulsion is mainly
caused by the decrease of the average bond length, which usually
accompanies the s2-lone-pair distortion. Hence, the VSEPR
energy of exchange (Pauli) repulsionδEP (and similarlyδEel)
does not contribute significantly to the energy balance of the
lone-pair effect, if only the symmetry-breaking angular distor-
tions are considered.

(5) The possibility to place the anionic complexes into a
polarizable solvent continuum for charge compensation has
contributed much to make the DFT results more realistic. The

energy correction with respect to the bare anions is considerable
for the highly charged complexes.

It is tempting to relate these results to the VSEPR model,9

which considers the Pauli repulsion between the valence shell
electron pairs and/or, in its recent modification, the energies
connected with theligand close packingconcept as the driving
force for the lone pair distortion. We think that both aspects
refer to the restoring energy in the vibronic theory rather than
to the vibronic stabilization, which is abonding phenomenon
(see under (4)) not considered in the mentioned approaches.
The statement of L. S. Bartell in ref 14 that “there does seem
to be a VESPR component over and above that of pure ligand
packing” (the vibronic coupling energy) is well in line with this
argument.

The applied vibronic coupling model, based on calculated
DFT energies, and the derivedhardness rule(see under (2))
have the potential to semiquantitatively analyze and systematize
the stereochemical and energetic consequences of the lone-pair
effect. Hopefully, the present concept at last weakens the
textbook statement11 concerning a theoretical deficiency, men-
tioned in the Introduction. In a further study, the authors intend
to extend the investigation to the halides of the sixth and seventh
main group and corresponding complexes, to check whether
the derived principles are more broadly applicable.
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Appendix

An exact solution of matrix (eq 2), but including the coupling
to the R1g mode and to the symmetry-breakingεg and τ2g

vibrations, has been presented and discussed by Maaskant and
Bersuker,40 with a few simplifications and within the two-state
model. We follow here a different philosophy, because the DFT
analysis provides numerical results, which allow one to deter-
mine a larger number of unknown quantities. In analogy to the
procedure applied to AX3 molecules,10 where the two-state
model is a good approximation in most cases, we sketch here
the calculation of the parametersNm, Eg

m, Ee
m, andErf

m (eqs 3,
4) for the CN) 4. It is based on the parametrization of the
appropriate vibronic matrix, which is formally equivalent to the
one for the octahedral case (section III).

1. CN ) 4. Restricting to distortions towardC2V, the 4× 4
can be reduced to a 2× 2 matrix, including the ground state
and one split component of the excited T2(Td) state (eq A1).

(40) Maaskant, W. J. A.; Bersuker, I. B.J. Phys.: Condens. Matter1991, 3,
37.

A1(s
2) T2(s

1pz
1)

Eg N
N Ee

(A1)

Eg ) (1/2)Kbτ b
2 + (1/2)Kετε

2 - K3τε
3 + (1/2)Ksτs

2 +

(1/2)KRτR
2
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τb, τε, τs, andτR denote the bendingτ2(ú), ε(θ) and stretching
τ2(ú), R1 symmetrized displacements inTd (Figure 6a; eq A2).
δθ1 andδθ2 are the polar angles defined with respect to theS4

axis, andδθ( and δθav are their out-of-phase and in-phase

changes (δθav > 0 for D2d compression).δR1 ) δR1′ )
|δR2| ) |δR2′| denote A-X bond length alterations andδR(,
δRav the corresponding out-of-phase and in-phase changes,
pertinent toτs andτR, respectively.tR′ ) KR′τR° is a contribution
due to the displacementτR° of the T2 potential curve with respect
to that of the ground state, andKb(Kb′), Ks(Ks′), KR(KR′), and
Kε(Kε′) are the force constants for the ground (excited) state.
The coupling constantstε and tR account for the shift of the
energy minimum of the excited-state potential surface with
respect to the ground state along theτε andτR coordinates, while
tb andts induce the PJT-mixing. The nonlinear vibronic constants
tbε andtRs allow for the coupling between the two bending and
between the two stretching modes, respectively, because any
τb(τs) displacement is always accompanied by certainτε(τR)-
type geometry changes. The various unknown parameters in
eq A1 have been determined as follows:

Kε , Kε′, and the higher-order force constantK3 for theε-mode,
as well as the excited-state JT-coupling constanttε, have been
deduced from DFT calculations, in which the energy changes
of the A1 and T2 states solely due to theτε distortions were
considered;KR, KR′ and tR′ were obtained by only varying the
P-F bond lengths. All mentioned parameters have been adopted
without change in eq A1. The remaining unknowns were
determined in two successive steps. First, an angular DFT
geometry optimization inC2V symmetry (only τb and τε

displacements) was performed, with the bond distances fixed
at theTd values, yieldingKb, Kb′, tb, tbε from the angular (a)
values of (E-

m)a, (EFC
m)a, (τb

m)a, and (τε
m)a. The second step

was a complete geometry optimization, from which, after
adopting Kb, Kb′, tb, tbε from the first step, the remaining
parametersKs, Ks′, ts, tR were deduced. The obtained geometrical
data and DFT energy changes (Td f C2V) for the bare

PF4
- complex are listed in Table A3. The angular parameters

from the (τb + τε) optimization (step 1) are very close to those
from the full optimization (step 2), this justifying the neglect
of terms, which mix angular and radial displacements. The most
significant vibronic energy increments (full optimization and
angular changes only, first and second line, respectively) for
PF4

- are collected in Table A4.

We could not use normal coordinates because the deviations
of the distorted from the parent structures are usually very large.
Instead, we employ the symmetrized displacements pertinent
to the DFT optimized geometries in the minima of the potential
energy curves. The derived force constants, which are effective
because higher-order terms are neglected, bear no physical
significance and are only needed to reliably estimate the crucial
restoring energyEg

m t Erf
m (eq A1). Utilizing the DFT energies

E-
m andEFC

m (eqs 3, 4),Evib
m andNm can then be determined.

As for the AX3 molecules, the nondiagonal vibronic coupling
(Nm) is of predominantly angular origin. The radial changes
enhance the vibronic interaction energyEvib

m by affecting
strongly the diagonal coupling contributionsδEg,e

m. This
enhancement is largely compensated by an increase of the
restoring energy, leading to an only moderate contribution to
the total stabilization energy. The solvent addition leavesEvib

m,
Erf

m, and henceE-
m nearly unchanged, thoughNm increases

significantly. Though the two-state approximation is not strictly
valid in the PF4- case- there are two further excited T2 states
at 7.4 and 8.1 eV present besides the one at 4.8 eV (bare anion)
- the respective influence on the vibronic coupling energy is
only small, as was explicitly checked.

2. CN ) 3. Because there is only one symmetry-breaking
mode R2′′, the coupling matrix is of the form A1; the
nondiagonal termN () tRτR + tRrτrτR) contains the vibronic
interaction constantstR and tRr, wheretR refers toR2′′, andtRr

mirrors the mixing of the bendingR2′′ with the totally symmetric
R1 displacement. A combined DFT-vibronic coupling calculation
has been performed for this class of compounds within the two-
state model, critically commenting on the validity of this
approximation.10 We only note here, in addition, that the
definition of the restoring energyErf

m given here (eq 4) differs
from the approximate one in eq 8a of ref 10. There, the initial
splitting δ had been introduced instead ofδEg,e

m, becauseδ is
more easily accessible.
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Ee ) δ + (1/2)Kb′τ b
2 + (1/2)Kε′τε

2 + tετε + (1/2)Ks′τs
2 +

(1/2)KR′τR
2 + tR′τR

N ) tbτb + tbετbτε
2 + tsτs + tRsτsτR

τb ) (1/x2)R(δθ1 - δθ2) ) x2Rδθ(

τε ) (1/x2)R(δθ1 + δθ2) ) x2Rδθav

τs ) (1/2)(δR1 + δR1′ - δR2 - δR2′) ) 2δR( (A2)

τR ) (1/2)(δR1 + δR1′ + δR2 + δR2′) ) 2δRav

step R2(R1) θ2(θ1) E-
m EFC

m τb
m τε

m τs
m τR

m

Td 1.87(1.87) 55°(125°) 0 3.96 0 0 0 0
C2V(1) 1.87(1.87) 99°(188°) -1.10 5.71 2.03 1.56 0 0
C2V(2) 1.68(1.81) 98°(188°) -1.70 6.39 2.06 1.54 0.09-0.25

(A3)

Nm δEg,e
m EFC

m Evib
m Erf

m E-
m

PF4
-, bare 2.99 -2.27 6.39 4.33 2.63-1.70

2.84 0.44 5.71 2.64 1.53-1.10
PF4

-, solv 3.57 -0.91 7.20 4.05 2.40-1.65
3.30 0.99 6.67 2.84 1.66-1.18

(A.4)
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